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Structural demography of Oxalis corniculata 1.. — The fate of buds
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Abstrak
Pembahagian kudup pokok Oxalis corniculata L. kepada tiga potfolio
pelaburan iaitu kudup vang dorman (D) kudup yang membesar menjadi
sejambak bunga (F) atau kudup vang membesar menjadi stolon (S) berbeza
mengikut masa dan susunan-susunan hiraki (kclas-kelas stolon) vang ada
pada pokok tersebut. Pelaburan potfolio yang berlainan ini tidak
menampakkan perbezaan vang nyata bagi tempoh 10 minggu selepas
percambahan biji. Pelaburan kudup pada minggu ke —11 dan minggu-minggu
berikutnya adalah mengikut bentuk susunan D > F > S. Bagi stolon-stolon
utama. bilangan kudup yang membesar menjadi ranting stolon mclebihi
kudup-kudup lain yvang membesar menjadi sejambak bunga atau vang
dorman, dengan bererti. Kudup-kudup yang ada pada stolon-stolon vang
kelas pelaburannya tinggi pada amnya berbentuk mengikut susunan: D > F
> S.

Keputusan ini telah dibincangkan mengikut hubungkait di antara
strategi pertumbuhan pokok dengan penawanan sumber, perhubungan di
antara modul-modul secara holistik.

Abstract
The atlocation of buds in Oxalis corniculata L. into three “investment
portfolios’ viz. remaining dormant (D). growing into inflorescences (F) or
stolon branches (S) differred with time and hierarchical positions (stolon
class) within the plant. No differences were registered among these
investment portfolios for the first 10 weeks after scedling emergence.
Investments of buds post from the 11th week onward were in the order of D
> F > S. In primary stolons. buds growing into stolon branches significantly
exceeded those remaining dormant or growing into inflorescences. In higher
stolon class. the investments of buds, generally were in the following order:
D>F>S.

The results are discussed in relation to the growth strategy of the plant
vis-a-vis resource capture, and to the inter-relationship between modules and
holistic approach.

“Central Research Laboratorics Division, MARDI. P.O. Box 12301, 50774 Kuala Lumpur, Malaysia
“*Computer Centre, MARDI. P.O. Box 12301. 50774 Kuala Lumpur. Malaysia
“*Techno-Economy and Social Studics Division. MARDI. P.O. Box 12301, 50774 Kuala Lumpur. Malaysia
Authors™ full names: Baki Bakar. Kamarudin Saadan and Ahmad Shokri Othman
*Malaysian Agricultural Rescarch and Development Institute 1990



Structural demography of Oxalis corniculata L.

Introduction

The architecture of a plant reflects
‘successful” meristems, and both the static
and dynamic structure of the plant thus
depends on its meristem bank, meristem
potential, position and fate (Harper and
Bell 1979). In essence, the population of
meristems on a plant is a reflection of the
potential of that plant for further growth
as well as reflecting the history of the
plant. By considering meristem potential,
position and fate, it becomes possible to
combine an understanding of the
organized structure of a plant with an
appreciation of the demography of its
parts.

The buds of a plant form a population
in which births and deaths occur. A bud
may die, remain dormant, develop into
shoot or produce flowers. In essence,
clonal branches are formed from the
reiteration of the basic units, while
flowers and inflorescences come from the
reiteration of units bearing modified
leaves. Flowering in particular may
produce great changes in the morphology
when meristems which have contributed
to clonal growth are diverted to sexual
reproduction. Halle et al. (1978) cited an
extreme case, found in species such as
Corypha elata (Palmae) where the stem is
unbranched, the inflorescence is terminal
and flowering ends the life of the tree.

Mailette (1982) likened the
population of buds on a tree, as did Noble
(1976) for a rhizomatous herb as
analogous to a bank. The fates of various
buds change with position on the plants
and represent different ‘investment
portfolios’ available for its buds viz.
investments in highly profitable but
expensive enterprises (long shoots) (sensu
Mailette 1982) and low revenue ventures
{short shoot) (sensu Mailette 1982); or in
low cost, high risk speculation (flowering)
(sensu Mailette 1982). Buds that remain
dormant act as a guarantee, but can be
mobilized as capital invested in an
emergence, e.g. regeneration after
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damage. There are risks and running costs
at all levels: predation and diseases
(taxation), senescence (devaluation and
depreciation). A flow of organic and
inorganic resources (a currency) is both
under internal control but tied to external
physiological and biological constraints.

Oxalis corniculata L. spp. corniculata
var. atropurpurea van Houtte ex Planchon
is a cosmopolitan weed belonging to the
family Oxalidaceae Sect. Corniculatae.
The weed occurs from sea level to snow
line (Eiten 1963; Holm et al. 1977;
Lourteig 1979) infesting many
horticultural and ornamental crops and
pastures, in tropical and temperate zones.
The species possesses some of the
characteristics of an *ideal weed’ (cf.
Baker 1965). Arguably, it is these
characteristics (e.g. the ability to
proliferate and produce ample numbers of
colonal and sexual reproductive modules
within a short period of 4—5 months)
which made O. corniculata an appropriate
candidate for ecological studies not least
in the context of population biology.

The present work is an attempt to
determine and describe the fates of buds
on plants of Oxalis corniculata L. and the
dynamics of the bank of buds on which the
growth and architecture of the plant
depend.

Materials and methods

Fresh seeds of Oxalis corniculata L. spp.
corniculata var. atropurpurea van Houtte
ex Planchon collected in October 1985
from horticultural greenhouses at Plas
Newydd. Anglesey. U.K., were sown in
plastic trays (21 em x 15 cm x 5 cm)
previously filled with John Innes No. 1
compost. Two weeks after emergence, six
seedlings were selected for uniformity and
transplanted individually into the centre
of I m x 1 mx 8 cm wooden box and filled
with John Innes No. 1 compost. The
plants were grown under heated
glasshouse conditions at Pen-y-Ffridd
Rescarch Station, UCNW, Bangor, U.K.



stolons

/i
I

Secondary stolons < i
Tertiary

stolons
Primary stolons N

.~ Mother plant axis

Figure 1. Diagrammatic view of stolon
production and growth of Oxalis corniculata
showing various classes of stolons, dormant
buds (0) of fruits/flowers (@) and their relative
positions

where the temperatures ranged from

15 °C to 27 °C (day) and 14 °C to 20 °C
(night) with supplementary illumination
from 400 watt high pressure lamps from
the 16th day. The plants were watered
from above when necessary using a fine
spray. The boxes were arranged in a
completely randomized manner.

At weekly intervals and for 22 weeks
after emergence, the number of buds that
were dormant (D), or grew into
inflorescences (F) and those that grow
into stolon branches (S) on the primary,
secondary, tertiary and quaternary stolons
were recorded. The number and fate of
buds on the mother plant axis that were
dormant or grew into inflorescences were
not taken into account. The experiment
commenced on 5 November 1985 and was
terminated on 14 April 1986.

Figure I illustrates diagrammatically
the orientation of growth of stolon of
O. corniculata 22 weeks after emergence.
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Generalised Linear Model (GLM)
was used to assess the competition effect
between dormant buds, inflorescences
and stolons over time at four different
orders of branching. Logarithmic
transformation was thought to be the most
appropriate since the effects were
multiplicative and the data covered quite
a wide range of values.

Results

The allocations of buds (or meristems) in
Ozxalis corniculata into stolon branches
(S), inflorescences (F) or remaining
dormant (D), differed considerably with
time and stolon class (Table I and

Figure 2). These differences were more
pronounced and significant from week 11
onward in the following order: D > F > S.
At the end of the experiment (i.e. 22
weeks after seedling emergence), the D
fractions accounted for about 733 buds (or
49.4% of the total buds) borne on the
plant while the remaining bud populations
were shared among the F (590 or 39.8%)
and the S (158 or 10.8%) fractions.

In primary stolons, the plant invested
significantly more buds in stolon branches
than either inflorescence or buds that
remained dormant. The population of
buds that grew into stolon branches was
consistently higher than the D or F types
at each time interval. The S fractions
formed about 44.9% of total bud counts
on primary stolons [Figure 2(b)].

Buds borne on secondary stolons
were mostly dormant forming about
43.4% of the total bud counts on such
stolon class. No differences were
registered up to week 13 between the
number of buds destined to remain
dormant and the number of buds to grow
into inflorescences [Figure 2(c)], while
from week 9 onwards buds growing into
stolon branches were consistently and
significantly lower than the D and F
fractions. In tertiary stolons, the D
fraction from 9 weeks onward likewise
outnumbered both the S and F
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Figure 2. Proportional allocations (%) of bud numbers of different fates in Oxalis corniculata as a
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populations, although these differences
may not always be significant at all time
intervals [Table I and Figure 2(d)]. In the
quaternary stolons order, no buds grew to
form stolon branches; buds were either
dormant or grew into inflorescences. The
hierarchial counts were consistently D >
F at each time interval (Table 1).

Discussion

Knowledge of the fate of axillary buds is
an important prerequisite in any
understanding of the dynamics of a plant
species (Maillette 1982; Chapman 1983
Solangaarachchi 1985; Baki 1986). Bell
(1979) argued that in rhizomatous plants,
it is the number of developing buds or
more precisely meristems that governs the
potential of a clone i.e. its productivity. In
this study on O. corniculata, a plant which
proliferates by both clonal and sexual
reproductive means, the central issuc is
the fate of axillary buds, which develop
either into stolon branches, flowers and
fruit, or remain dormant.

The distinct differences in the
population of stolons of different orders
or the production of buds growing into
inflorescence on such stolons at each time
interval (Table [ and Figure 2) may be
interpreted as evidence that the law of
allometric growth prevails within the
whole plant of O. corniculata. This is in
line with the view that the growth of
modular plants is clearly programmed and
that ‘allometries must necessarily arise in
modular organisms when the genet as a
whole has indeterminate growth but the
size of individual modules is essentially
determinate’ (Harper 1985). Further, it
appears that some kind of regulatory
mechanism was operating in
O. corniculata which determined the
number of axillary buds that developed
into stolon branches and inflorescences or
remained dormant in the phasic (sensu
Watt 1947) development of the plant.
Implicit to this was the greater tendency
of buds on primary stolons to develop into
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stolon branches — an evident of growth
strategy which laid emphasis on clonal
growth for greater exploration and
exploitation of resources (space) (Table I
and Figure 2). In higher order stolons,
growth emphasis was mainly sexual
reproductive — a modification of tactics
(sensu Van Der Pijl 1972) to ensure
dispersal colonization (through seed). It
would be intriguing to ascertain that the
mechanics of such regulations were
through integrative hormonal control per
se or as local adjustments and responses to
the presence of neighbour modules or
both.

Generally, there was an apparent
display oi asymptotic relationships
between the number of buds that
developed into the different fates (S, F or
D) with time (Table 1) and these were
similar to those observed for ramet
production in Eichornia crassipes (Watson
1984). Such relationship may be
reflections of one or more of the following
possibilities: (i) the system is running out
of finite resources and competition
between stolons of different orders for
such resources prevail and (ii) the onset of
flowering from 7 weeks after seedling
emergence onwards and the production of
fruit and seed thereafter may mean that
resources, that might otherwise have been
allocated for further production of stolons
and their growth, were diverted to fruit
and seed production or were limitedly
available. Further, asymptotic
relationship between the rate of
recruitment of S. D or F modules
(Table 1) may be considered as
manifestation of law of diminishing
returns operating in larger plants whereby
the accumulation of further numbers of
such modules did not increase the birth
rate. Similar arguments have been first
forwarded by Clegg (1978) to explain the
asymptotic relationships between leaf
birth rate and time in Ranunculus repens.

Both hypotheses were based on the
Harperian view of the Candollean



Doctrines (Cusset 1982) which laid
emphasis on the individual plant as an
organized whole, and as such emphasize
holistic aspects of construction, modular
interdependence and integration within
clonal plants of which O. corniculata is
one.

Baki (1986) reported an
enhancement in the rate of primary
stolons recruitment in O. corniculata
following detachment of existing stolons
from the mother plant axis; these
observations may be construed as
evidence that modular integration
prevailed in the plant. Evidence for
modular interdependence and integration
with clonal plants have been reported
elsewhere (Marshall and Sagar 1966;
Noble 1976; Harnett and Bazzaz 1985).

The second hypothesis is based on
traditional resource allocation model
which proposes that sexual reproduction
inhibits clonal growth by intra-plant
competition (Cohen 1968, 1971; Harper
and Ogden 1970; Abrahamson 1975;
White 1979). Harper (1977) wrote
‘perennial interoperous plants often show
an inverse correlation between clonal
growth and production of fruit and seed
which suggests that fecundity and clonal
activity are not wholly compatible’.
Watson (1984) suggested that one
appropriate explanation for the inverse
correlation between production of
inflorescence and ramet population
growth rates observed in Eichornia
crassipes was the outcome of competition
among life history functions for a limited
number of meristems available for
differentiation, rather than competing for
available assimilate. This argument is
consistent with and complimentary to the
evidence of carbon economy of various
plant modules. It would be interesting to
ascertain that the observed reduction in
the production of stolons vis-a-vis
inflorescence and dormant buds with time
for higher order stolons (Table 1) was the
consequence of competition with other
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life history functions (reproductive and
other clonal modules) for the limited
resources or competition for limited
numbers of meristems available for
differentiation or both; the subject
remains for further research.

The sigmoid patterns of cumulation
of the S, F and D modules with time in
O. corniculata (Table 1), besides being
interpreted as a consequence of intra-
plant competition among members of a
metapopulation (White 1980), may be
attributed to ‘time-mediated resource
depletion” within the environment that
these plants were subjected to. The fact
that stolons, inflorescences and dormant
buds emerged at different times, their
rates of population growth differed
considerably (at leasts initially) and this
may be explained by the initially high C.V.
values (Figure 3). The reduction and
apparent stability of C. V. values with time
help to explain that the rates of
recruitment among these modules (of the
same type) were getting similar.
Solangaarachchi (1985) and Franco (1985)
forwarded similar arguments to help
explain the approaching similar growth
rates of Trifolium repens L. and Kochia
scoparia L. respectively with time.

The disparity in the proportion (%)
of buds fated to become the S, F and D
modules with time in O. corniculata
(Figure 2) may also be related for the light
environment within the canopy.
Arguably, based on first principles. at the
later stage (say from the 14th week
onwards) there must have been a
corresponding increase in shading.
thereby reducing the photosynthetically
active radiation (PAR) or PR/PF values in
the canopy and at ground level. Such
reductions in PAR or PR/PF may have led
to failures of bud break of axillary buds or
stolons (Table I and Figure 2). Similar
arguments have been made by several
workers e.g. Bogorad and Mclirath (1960)
in Xanthium spp. and Kasperbauer (1971)
in Nicotiana tabacum L. Solangaarachchi
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(1985) observed that the number of
stolons of Trifolium spp. decreased with
reduced light intensity or PAR. Beinhart
(1963), Harvey (1979) and Davies and
Evans (1983) recorded the inhibition of
the development of axillary buds in
Trifolium repens with reduced PAR.
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