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Prediction of SPAD chlorophyll meter readings using remote 
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Abstract
A method using unmanned airborne vehicle (UAV) and image processing 
technique to enable prediction of SPAD chlorophyll meter readings was 
developed. Relationships between SPAD readings and R, G, B, R/(R+G+B), 
G/(R+G+B), and B/(R+G+B) values were analysed. The R/(R+G+B) values 
indicate the highest correlation with SPAD readings with r2 value of –0.9695 and 
a SPAD reading prediction model was developed from the relationship analysis. 
The prediction model is capable to predict SPAD reading with average accuracy 
value of 89%. A SPAD reading map was generated by converting the spectral 
reflectance values into SPAD readings using the prediction model. This SPAD 
reading map was classified into high, medium and low levels of SPAD values for 
easy identification of N stress levels in the paddy fields.
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Introduction
Rice is a staple food for more than 3 
billion people in the world. In 2007 the 
rice self-sufficiency level for Malaysia was 
72% (Liew et al. 2010). Total area of rice 
cultivation in Malaysia in 2009 was 676,034 
hectares with total production of about 2.19 
million tonnes (MOA 2010). In the past 
few years, rice growers were facing higher 
production costs especially fertilizer.
 Crop yield is directly related to the 
amount of nutrients taken up by the crop, 
and fertilizers supply a significant portion 
of the nutrients required to achieve a high 
and profitable yield. Insufficient fertilizer 
inputs will affect plant growth while over 
application will acidify soils and water 
resources. Optimization of fertilizer inputs 
is important for minimizing production cost, 

maximizing profitable yields and decreasing 
environmental impact.
 Precision farming (PF) is a solution for 
minimizing fertilizer input and maximizing 
yields. According to Patil (2009), PF is a 
management strategy that employs detailed 
site specific information to precisely manage 
production inputs. PF can contribute in 
many ways to long term sustainability of 
agriculture. The idea is to know the soil 
and crop characteristics unique to each part 
of the field, and to optimize the production 
inputs within small portions of the field.
 Currently, the farmer's usual practice 
is to apply fertilizers at one rate throughout 
the farming area. Such practice can lead to 
wastage of resources and maximum yields 
cannot be achieved, since spatial variability 
is altogether ignored in the management 
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option (Patil 2009). This blanket or package 
fertilizer recommendations over large areas 
is not efficient because indigenous nutrient 
supply varies widely among rice fields 
(Dobermann and White 1999; Olk et al. 
1999).
 Generally, nitrogen (N) is required in 
large quantities, and it is the most mobile 
and dynamic nutrient in soil systems. It 
is well documented that soil physical and 
chemical properties are spatially variable 
and affect N dynamics and the mechanisms 
for its losses (Khosla et al. 2002). N 
application often dramatically increases crop 
yields, but N needs vary spatially across 
fields and landscapes (Scharf et al. 2002). 
Variable-rate N management is one of the 
most important activities in PF for applying 
precise amount of fertilizer required to 
maximize crop yields.
 According to Scharf et al. (2002) 
the soil spectral property (i.e. colour) is 
related to soil organic matter and soil 
moisture levels, factors that influence the 
N-supplying ability of the soil. Plant spectral 
properties reflect crop N status and soil 
N availability that are useful for directing 
in-season variable-rate N applications. Plant 
colour may also be useful for assessing the 
adequacy of crop N supply achieved with 
a given N management practice. Various 
strategies of variable-rate N management 
system based on plant spectral properties 
are being developed for optimizing fertilizer 
usage in rice fields.
 Holland and Schepers (2010) 
developed a production-based in-season 
N recommendation model for use with 
crop canopy sensors and remote sensing 
data. This approach is based on the 
general shape of a N fertilizer response 
function (sensor index vs. N rate) and the 
relationship between N rate and in-season 
crop vegetation index data. Transformation 
and substitution techniques were used to 
generate a simple function that offers an 
N fertilizer recommendation based on 
spatially variable in-season remote sens ing 
data and established local crop production 

information such as the economic optimum 
N rate or producer defined opti mum N rate.
 Gholizadeh et al. (2011) described 
a conceptual frame work for applying 
principles and technology of PF to 
understand and control the system of 
agriculture towards a low input, high 
efficiency and sustainable agriculture in a 
paddy field. The experiment concluded that 
SPAD (Soil Plant Analysis Development) 
readings can be used to predict leaves’ total 
N amount and future crop N needs. The 
adaptation of the SPAD meter is needed in 
PF for Malaysian paddy fields under double 
cultivation to assess crop N status and 
determine the plant’s needs.
 According to Percival et al. (2008), 
the SPAD meter is a commercially 
available portable piece of equipment that 
is used to measure leaf greenness (SPAD 
readings) based on optical responses 
when a leaf is exposed to light. These 
responses are then used to estimate foliar 
chlorophyll concentrations. The meter makes 
instantaneous and non-destructive readings 
on a plant based on the quantification of 
light intensity.
 The SPAD meter has been used by 
Peng et al. (1996) to monitor plant N status 
in situ in the fields and to determine the 
right time of N topdressing in rice.
 Balasubramanian et al. (1999) reported 
that the SPAD threshold value of 35 is 
good for transplanted rice in dry season. 
The threshold has to be reduced to 32 for 
wet-seeded rice in dry season and for all rice 
during wet season with cloudy weather and 
low radiation. Thus, when calibrated with 
local cultivar groups and crop conditions, 
it can be used to accurately monitor crop 
N status and to advise farmers on N 
topdressing for rice. It can also be used 
effectively to verify the adequacy of existing 
N fertilizer recommendations to rice by the 
in situ monitoring of foliar N status of crops 
fertilized with current recommendations 
and to refine them to further improve N 
fertilization of rice.
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 Nguyen et al. (2007) mentioned that 
N management at the panicle initiation 
stage (PI) should be fine-tuned for 
securing a concurrent high yield and 
high quality rice production. Hence an 
experiment for calibration and testing of the 
recommendation models of N topdressing 
rates at PI for target grain yield and protein 
content of rice was conducted. Data from 
the first two years of experiments were used 
to calibrate models to predict grain yield 
and milled rice protein content using shoot 
fresh weight (FW), SPAD reading, and the 
N topdressing rate (Npi) at PI by stepwise 
multiple regression. Results showed that 
the recommended N rate treatments for the 
target protein content of 6.8% and grain 
yield were highly dependent on FW and 
SPAD reading at PI.
 Recently, optical sensing of crop 
canopy spectral reflectance from ground to 
aircraft and satellite-based platforms has 
been introduced to estimate the crop N 
deficient portions of the whole fields, and 
directing site-specific fertilizer applications 
for improving N use efficiency in the 
fields (Raun et al. 2002). Remote sensing 
collects spatially dense information that may 
contribute to, or provide feedback about N 
management decisions. There is potential 
to accurately predict N fertilizer need at 
each point in the field. This would reduce 
surplus N in the crop production system 
without reducing crop yield, which would in 
turn reduce N losses to surface and ground 
waters (Scharf et al. 2002).
 Shigeto and Makoto (1998) developed 
a low-cost diagnostic method that is easy 
to use to assess the nutrient status of plants, 
based on the estimation of chlorophyll 
content of leaves using a portable colour 
video camera and a personal computer. 
The method analysed the relationships 
between chlorophyll content and various 
functions derived from red, green and blue 
wavelengths. Results showed that although 
red-blue and green-blue wavelengths 
present the highest correlation with 
chlorophyll content under a limited range of 

meteorological conditions, the normalized 
difference (red-blue)/(red-blue) is the most 
applicable function which can use data 
collected under different meteorological 
conditions. The accuracy in estimating 
chlorophyll content from video images 
could be improved by correcting the solar 
radiation data.
 Yoder and Pettigrew-Crosby (1995) 
investigated that the spectral characteristics 
associated with crop N status rely on 
the variation in strength of chlorophyll 
absorbance in the visible (450–690 nm) 
region of the electromagnetic spectrum. 
Results indicated that shortwave infrared 
bands were best predictors for nitrogen, 
visible bands best for chlorophyll. In the 
shortwave infrared region, however, the 
absolute differences in reflectance at critical 
bands were extremely small, and the bands 
of high correlation were narrow. High 
spectral and radiance resolution are required 
to resolve these differences accurately.
 Daughtry et al. (2000) conducted 
an experiment to select wavelengths 
sensitive to leaf chlorophyll concentration, 
to simulate canopy reflectance using a 
radiative transfer model, and to propose a 
strategy for detecting leaf chlorophyll status 
of plants using remotely sensed data. In 
the study, a wide range of leaf chlorophyll 
levels was established in field-grown corn 
(Zea mays  L.) with different rates of N 
application. Crop canopy reflectance was 
simulated using the SAIL (Scattering 
by Arbitrarily Inclined Leaves) canopy 
reflectance model. Spectral vegetation 
indices that combined near-infrared 
reflectance and red reflectance (e.g., OSAVI 
and NIR/Red) and near-infrared and other 
visible bands (MCARI and NIR/Green) 
when plotted together produced isolines of 
leaf chlorophyll concentrations. The slopes 
of these isolines were linearly related to leaf 
chlorophyll concentration.
 The objective of this paper was to 
develop a SPAD reading prediction model 
for generating N fertilizer treatment map 
using image processing technique.
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Materials and methods
Figure 1 shows the flow of the methodology 
consisting of field-based data collection, 
images acquisition, spectral reflectance value 
extraction, statistical analysis and SPAD 
reading map generation.

Field-based SPAD data collection
An experiment on plant growth was 
conducted with application of 6 different 
fertilizer treatments in the paddy field at 
FELCRA Seberang Perak on 13th April 
2009. The experiment was carried out by 
planting variety MR 219 seeds in four 
fertilizer treatment plots and each plot was 
subdivided into 6 equal size small plots. 
Each subdivided treatment plot (STP) with 
an area of 20 m X 10 m was applied a 
specific amount of N fertilizer as follows: 
STP1 = 0 kg, STP2 = 1 kg, STP3 = 2 kg, 
STP4 = 3 kg, STP 5 = 3.5 kg and STP6 = 
4  kg. A field-based SPAD data was collected 
using SPAD chlorophyll meter on 3 June 
2009 (at 51 days growing stage). The data 
collection was performed by taking SPAD 
reading at the four corner points and centre 
point of a 25 cm2 aluminium frame square 
at the centre of each subdivided treatment 
plot.

Images acquisition
A total of 100 red (R), green (G) and blue 
(B) images of the study area were obtained 
below a cloud canopy by a CropCam 
unmanned airborne vehicle (UAV) at 

9.30  a.m, 3 June 2009 with 280 m flying 
height. The CropCam is a radio controlled 
model glider plane equipped with a Trimble 
1Hz update rate, Lassen IQ (P/N 46240-25), 
a miniature autopilot and digital camera. The 
weight of the miniature CropCam aircraft is 
about 2.7 kg, has a 2.44 m wingspan and an 
overall length of 1.22 m. The engine runs on 
four 2100 mah lithium polymer batteries. A 
set of full charged batteries provides about 
30 min running time. The average speed 
of the CropCam is 60 km/h and can fly in 
winds up to 30 km/h. The CropCam can fly 
at an altitude of 122–640 m (depending on 
the country’s flying circular or regulation). 
The MP2028P Autopilot is installed 
and pre-programmed with capability to 
program user flight plans. Hand launched 
and automatically flown from take off 
to landing, the CropCam provides high 
resolution GPS based images on demand. 
Both the CropCam and the camera perform 
automatically to take GPS based digital 
images.

Spectral reflectance value extraction
All captured images with latitude, longitude 
and altitude information were mosaic and 
processed using a commercial PCI image 
processing software. After processing, the 
image spatial resolution was 6.25 cm. The 
locations of SPAD readings taken at each 
centre of the subdivided treatment plot were 
identified. A 4 x 4 pixels mask equal size 
with 25 cm2 aluminium frame square was 

Field-based data collection Images acquisition

SPAD reading map generation

Statistical analysis

Spectral reflectance value extraction

Figure 1. Methodology flow
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marked at the centre of each subdivided 
treatment plot on the mosaic image for R, G, 
and B spectral reflectance values extraction.

Statistical analysis
The mean values of SPAD readings and R, 
G, and B spectral reflectance values were 
calculated. Relationships between SPAD 
readings and R, G, B values were analysed 
to establish the calibration curve to predict 
the SPAD readings. The equations, R/
(R+G+B), G/(R+G+B) and B/(R+G+B), 
which have been used by Shigeto and 
Makoto (1998), were used to estimate 
chlorophyll content of leaves. The best 
coefficient of determination (r2) of the 
calibration curve was selected to predict 
SPAD readings.

Generation of SPAD reading map
SPAD reading map was generated by 
converting the spectral reflectance values 
into SPAD readings using the selected 
calibration curve. The SPAD reading 
map was classified into low, medium and 
high value clusters using Iterative Self-
Organizing Data Analysis (ISODATA) 
image processing technique. ISODATA is an 
unsupervised classification method that uses 
an iterative approach incorporating a number 
of heuristic procedures to compute clusters. 
This clustering method uses minimum 
spectral distance formula, which is based on 
Euclidean distance equation to form clusters 
(Swain and Davis 1978). The equation is 
given below:

  –––––––––––– n
SDxyc= √∑(µci – Xxyi)2

 i=1

where,
 n = The number of bands
 i = The band number
 c = A particular class
Xxyi = The data file value of pixel x, y in 

band i

 µci = The mean of data file values (digital 
numbers) in band i for the sample 
for class c

SDxyc = The spectral distance from pixel x, y 
to mean of class c

Results and discussion
Figure 2 shows the mosaic image for the 
study area. Table 1 shows the average SPAD 
readings, R, G and B spectral reflectance 
values for all experimental plots with 
different N fertilizer applications. Means and 
standard deviations for the average SPAD 
readings, R, G and B spectral reflectance 
values were 31.99 and 3.49, 91.88 and 
8.2, 112.75 and 5.06, and 62.75 and 2.75 
respectively.
 Figure 3 shows the relationship 
between measured SPAD readings and 
N fertilizer treatments. The chlorophyll 
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Figure 2. RGB mosaic image of the study area

Figure 3. Relationship between measured SPAD 
readings and N fertilizer treatments
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Figure 4a. Relationship between measured SPAD 
readings and R, G and B spectral reflectance 
values
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Figure 4b. Relationship between measured SPAD 
readings and R/(R+G+B), G/(R+G+B) and B/
(R+G+B) values
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Table 1. Average of SPAD readings and R, G and B spectral reflectance values of the 
experimental plots with different N fertilizer applications

Subdivided N fertilizer Average Average spectral reflectance
treatment plot treatment (kg) SPAD reading

 
   R G B
STP1 0 25.99 106.75 121.25 64.25
STP2 1 30.49  91.75 112.50 61.25
STP3 2 32.71  92.75 115.00 66.00
STP4 3 32.65  89.50 107.25 65.25
STP5 3.5 33.86  88.50 112.25 59.75
STP6 4 36.25  82.00 108.25 60.00
Mean  31.99  91.88 112.75 62.75
Standard deviation   3.49   8.20   5.06  2.75

Figure 5a. The dependency between SPAD 
readings and R spectral reflectance values
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Figure 5b. The dependency between SPAD 
readings and R/(R+G+B) values
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content in the plant leaves measured by 
SPAD meter is closely related to the N 
applied in the field for plant growth. The 
SPAD readings increased as the amount of 
N application increased due to sufficient 
amounts of available nutrients taken up by 
the plants to develop a healthy green colour. 

SPAD reading depends on the amount of 
chlorophyll content (i.e. green pigment) 
found in the plant.
 Figure 4a indicates the relationship 
between measured SPAD readings and 
R, G and B spectral reflectance values. 
Figure 4b presents the relationship 



133

C.C. Teoh, D. Abu Hassan, M. Muhammad Radzali and J.J. Jafni

between measured SPAD readings and R/
(R+G+B), G/(R+G+B) and B/(R+G+B) 
values. The negative r2 values indicated 
that as the values for spectral reflectance 
increased, values for SPAD readings 
decreased while the positive values showed 
a linear relationship between the two 
variables such that an increase in spectral 
reflectance also increased the SPAD 
readings. Results showed that the highest 
and lowest relationships were found in R/
(R+G+B) and B with r2 values of -0.9695 
and -0.175 respectively. Comparison of r2 
values indicated that the first two highest 
values were present in R/(R+G+B) and 
R. The regression models describing the 
dependency between (i) SPAD readings and 
R spectral reflectance values (Figure  4a) and 
(ii) SPAD readings and R/(R+G+B) values 
(Figure 4b) are shown in the equations 
below:

SPAD reading = –0.4108* [R spectral reflectance value] + 69.737 Equation (1)

SPAD reading = –277.05* [R/(R+G+B) function value] + 127.05 Equation (2)

Figures 5a and 5b indicate 95% confidence 
and prediction intervals result. The 
prediction bands are wider than the 
corresponding confidence bands to allow 
the linear model to predict the value of a 
random variable rather than estimating a 

parameter. As a result, the linear models 
give a good confidence for prediction 
of SPAD reading based on R spectral 
reflectance values, and R/(R+G+B) values. 
The 95% confident intervals for intercept 
and slope of linear model for R spectral 
reflectance values and R/(R+G+B) values 
were 55.86 to 83.62 and –0.5614 to –0.2602, 
and 103.6 to –150.5 and –345 to –209 
respectively.
 The validity of the results of the linear 
regression analysis requires fulfilment 
of certain assumptions about the data. 
Particularly, the study assumes that the 
linear model is appropriate, the residuals are 
independent and normally distributed with 
the same variance everywhere (Chiparus and 
Chen 2003). An analysis of the residuals 
was used to detect violations of assumptions. 
Figures 6a and 6b present the plots of 
residuals versus independent values. It can 
be seen that the plots show homogeneous 
error variances and does not show any 
pattern. This gave confidence regarding the 
normal distribution of the data and suggests 
that assumptions are fulfilled. The results 
from the plots also showed that there are 
no extremely large residuals (and hence no 
apparent outliers) and that there is no trend 
in the residuals to indicate the two linear 
models are inappropriate.

Figure 6a. The residuals (error) distribution for 
R spectral reflectance value

Figure 6b. The residuals (error) distribution for 
R/(R+G+B) value
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 The two SPAD reading prediction 
models were verified by 8 random SPAD 
reading samples that were measured from 
outside the experimental plots using SPAD 
meter. Table 2 shows the measured SPAD 
readings and predicted SPAD readings 
using the two SPAD reading prediction 
models. Mean and standard deviation for 
the measured SPAD readings were 34.79 
and 1.33 respectively while for predicted 
SPAD readings using linear models based 
on R spectral reflectance values and R/
(R+G+B) values were 33.07 and 4.8, and 
31.78 and 3.02 respectively. Comparison 
between measured and predicted SPAD 
values showed that the R spectral 

reflectance values, and R/(R+G+B) values 
are capable to predict SPAD readings 
with average accuracy values of 87% and 
89% respectively. The prediction accuracy 
by the R/(R+G+B) values is slightly 
higher than R spectral reflectance values 
due to the normalizing correction of the 
distortions caused by solar radiation and 
shadows in the image. Figure 7 shows the 
SPAD reading map that is generated by 
converting the spectral reflectance values 
into SPAD readings using prediction model 
developed from the R/(R+G+B) equation. 
The SPAD readings ranged from 28 to 61 
with mean and standard deviation values 
of 48.07 and 3.22 respectively. Figure 8 

Table 2. Measured SPAD readings and predicted SPAD readings

Sampling point Measured average Predicted SPAD Predicted SPAD
 SPAD readings readings by R readings by R/(R+G+B)
1 32.78 29.89 30.73
2 35.58 26.19 30.13
3 35.58 31.12 28.4
4 33.28 41.8 36.04
5 36.54 36.46 35.83
6 35.36 33.59 32.55
7 35.46 30.3 28.18
8 33.78 35.23 32.45
Mean 34.79 33.07 31.78
Standard deviation  1.33  4.8  3.02
Average accuracy  87% 89%
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Figure 7. SPAD reading map
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Figure 8. Classified SPAD reading map
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presents the classified SPAD reading map 
using ISODATA unsupervised classifier to 
classify the map into high, medium and 
low SPAD readings classes. This classified 
map is useful in identifying N stress levels 
based on SPAD readings for more precise N 
management in the field.

Conclusion
Relationships between SPAD readings and 
R, G, B, R/(R+G+B), G/(R+G+B) and B/
(R+G+B) values have been analysed. The 
R/(R+G+B) values indicate the highest r2 

with a value of -0.9695. A SPAD reading 
prediction model that is capable to predict 
SPAD readings with an average accuracy 
value of 89% has been developed. A SPAD 
reading map classified into high, medium 
and low levels of SPAD values was 
generated using the developed prediction 
model for easy identification of N stress 
levels in the field. The classified SPAD 
reading map in conjunction with other field 
information such as soil fertility and yield 
maps can be used to develop variable-
rate N application system for site-specific 
farming operations. The present work is still 
preliminary using RGB images obtained 
from UAV system with limited ground 
sampling points. Further research emphasis 
will be on development of SPAD reading 
prediction method using RGB and near 
infrared images and more ground sampling 
points will be collected to improve the 
accuracy of SPAD reading prediction model.
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